If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-4p-26=0
a = 1; b = -4; c = -26;
Δ = b2-4ac
Δ = -42-4·1·(-26)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{30}}{2*1}=\frac{4-2\sqrt{30}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{30}}{2*1}=\frac{4+2\sqrt{30}}{2} $
| 1/x-1/2x-1/5x=10/x+1 | | 2(3t-2t)= | | 2^x-1=13 | | 6x×x=882 | | x/4+12=38 | | -14d=42 | | 1/8xM=12 | | 30+r-10=50 | | 7(x+8)=0 | | 87=43+x | | 3(3y-7)=5y+17+y | | 4y=8y-20 | | 16.2+h=28 | | 4(2Q+3p)= | | 7(3.4b-1.2)=22.5 | | 22n=148 | | 3(2x+3)=11x+5-5x+4 | | 3/2(t)=6 | | 1-x/1+x=0 | | 5(2-3x)³4-3(4x+7)=0 | | H(t)=-16t+32t+48 | | 10=x*25 | | j/5=14 | | k-5/2=3 | | 12-5k=-6-11k | | U=32-5u | | 20x-7x=155 | | y-4=y=1 | | 8c/15=2/39 | | 4x+6=8x+(-6) | | 1(p+27)= | | 4(6j-15)=6(382j |